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Abstract

This paper presents the Reliable Multicast Protocol (RMP). RMP provides a totally ordered, reliable, atomic multicast

service on top of an unreliable multicast datagram service such as IP Multicasting. RMP is fully and symmetrically

distributed so that no site bears an undue portion of the communication load. RMP provides a wide range of guarantees.

from unreliable delivery to totally ordered delivery, to K-resilient` majority resilient, and totally resilient atomic delivery.

These QoS guarantees are selectable on a per packet basis. RMP provides many communication options, including

virtual synchrony, a publisher/subscriber model of message delivery, a client/server model of delivery, an implicit naming

service, mutually exclusive handlers for messages, and mutually exclusive locks.

It has commonly been held that a large performance penalty must be paid in order to implement total ordeting--RMP

discounts this. On SparcStationl0's on a 1250 KB/sec Etheruet, RMP provides totally ordered packet delivery to one

destination at 842 KB/sec throughput and with 3.1 ms packet latency. The performance stays roughly constant

independent of the number of destinations. For two or more destinations on a LAN. RMP provides higher throughput

than any protocol that does not use mulficast or broadcast.

Keywords: Congestion control, internetworking, distributed network algorithms, network reliability

! Introduction

Totally ordered, reliable broadcast and multicast protocols have existed for quite some time [ChMa84], and provide a

powerful tool for programming distributed systems and distributed databases [Chang84]. New applications such as

Computer Supported Cooperative Work (CSCW) programs, groupware systems and shared tools can also benefit greatly

from this service. In the past, these protocols have had problems with performance, efficiency, and/or scalability. It has

become a widespread belief that these are inherent problems with a totally ordered reliable multicast protocol [RaLi93].

In part, this concept resulted from the fact that in the past multicasts had to be implemented as a series of unicasts to each
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destination. Recent developments such as the IP Multicasting standard [Deering89] now allow a multicast datagram to be

sent to multiple destinations over an internetwork. In the case where all destinations are ¢m the same LAN, one multicast

packet to all of them costs the same as a unicast packet to jnst one.

This paper presents the Reliable Multicast Protcxol (RMP) which provides a reliable mulficast service on top of

unreliable datagram services such as IP and IP Multicasting. RMP is based on a modified version of the token passin 8

protocol proposed by J. M. Chang and N. F. Maxemchuk in [ChMa83] and [ChMa84]. The basic RMP protocol provides

what can be thought of as a N-way virtual circuits, called token rings, between groups of processes connected by a

multicast medium. It is fully distributed, so that all processes play the same role in commtmication. While primarily

using NACKs for error detection and retransmission. RMP provides true reliability and limits the necessary buffer space

by passing a token around the members of a token ring.

RMP provides a wide range of reliability and ordering guarantees on packet delivery, selectable on a per packet basis.

In addition to unreliable and reliable but unordered quality of service (QoS) levels. RMP can provide atomic, reliably

delivery of packets ordered with respect to each source. It can also efficiently provide delivery of packets in both total and

causal order, using causal ordering as defined in [Lamp78]. Totally ordered delivery also provides virtual synchrony, as

first defined by the ISIS project [BSS91]. Virtual synchrony guarantees that when new members join or leave a group

these operations appear to be atomic, so that the sets of messages delivered before and after each membership change are

consistent across all sites. Using K-resilient fault tolerance. RMP can provide total ordering and atomicity guarantees

even in the face of site failures and partitions. For a set of packets with a resiliency level of K, more than K members of a

group have to simultaneously partition away or fail in order to have the possibility of violating the total orderin 8 and

atomicity guarantees. By setting K to a number larger than haft the members of a ring and not aUowin 8 minority

partitions to continue, total ordering, atomicity, and virtual synchrony can be guaranteed in the face of any set of arbitrary

partitions and failures.

The basic RMP model of communication is a publisher/subscriber model based on textual token ring names. In the

absence of network partitions, any member of a token ring (a subscriber) will receive all packets sent (published) to the

token ring associated with that token ring name. RMP also provides a client/server model of communication, where the

servers are members of a token ring and the clients are not members, but can communicate with the servers by sending
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multi-RPC packets to the group. These packets may be simply acknowledged after being delivered to the token ring with

the requested QoS. cf they may be responded to by a single member of the token ring. RMP uses handlers to guarantee

that at most one member will respond to a data packet. Each data packet in RMP has an optional handler number

associated with it. These correspond to a set of mutually exclusive handler locks which token ring members may hold.

The token ring member who holds a given handler lock will be notified upon delivery of a data packet with this handler

number that it is supposed to respond to the request. Handler locks are provided in a very efficient way. and can be used

for any type of application that requires mutually exclusive locks shared among a group of communicating processes.

A common belief in the research community is that totally ordered reliable multicast protocols are inherently slow.

This belief has come about in large part due to the experiences researchers have had with the early versions d ISIS.

which for a long time was the only system of this type available. ISIS has since become much faster [BiCI94], but the

misconception remains. Experience with RMP belies this concept. RMP was tested on 8 SparcStationl0's on a 10

Mb/sec (1250 KB/sec) Ethernet. In this environment, the throughput to a single destination is 842 KB/sec. or 67.4% of

the network capacity. For group communication to any group of two or more destinations on a LAN, RMP exceeds not

_ttly the maximum throughput of TCP/IP, but any other possible non-multicast and non-broadcast algorithm. This is

because both the packet latency and throughput of RMP stay roughly constant as the number of destinations increase,

whereas the performance of other algorithms decreases linearly. For a group with 8 destinations. RMP has a 6.8 MB/sec

aggregate throughput, which is 5.4 times the bandwidth of the supporting Ethernet. The throughput for RMP does not

significantly change as a factor of the ordering guarantees, but the per packet latency does. A totally ordered packet will

on average have a latency approximately twice that of an unordered or source ordered packet, and this increases for K-

resilient packets. This QoS for latency Izadeoff is fundamental to dismbuted protocols, which is why RMP allows this

tradeoff to be made on a per packet basis. Despite this moderate latency penalty for its total ordering. RMP latency to two

or more destinations is still lower than most other protocols. Therefore RMP demonstrates that a fault tolerant, reliable.

atomic, fully distributed, totally ordered multicast protocol can actually achieve much better performance in group

communication than systems that don't provide these features.
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Section 2 describes the architecture and system usage model of RMP. Section 3 describes the RMP algorithms.

Section 4 analyzes the performance of RMP, and section 5 compares RMP to previous work. Finally, section 6 draws our

conclusions and outlines future work and section 7 acknowledges all the support we have had for RMP.

2 System usage and architecture

RMP is a transport level protocol that provides reliable datagram delivery on top of a unicast or mnlticast unreliable

datagram service. It allows multiple groups of processes to communicate with selectable levels of reliability and ordering

through the use of a QoS field in each data packet. RMP supports both implicit and explicit naming as well as

publisher/subscriber and client/server models of communication. Finally, RMP allows processes that are not multicast

capable to participate in the group communication through the use of forwarding and non-multicast capable flags.

2.1 RMP entities

RMP is organized around RMP processes, token rings, and token lists. The basic entity that uses RMP to

communicate is called a RMP process. A RMP process typically corresponds to a single UNIX process, application, or

"software bus". There may be multiple RMP processes on the same host. Each RMP process is uniquely identified by the

IP address of its host concatenated with a UDP port number that may not be reused between processes on a host and is

constant over the life of that RMP process. This ID. called a RMP process ID. is unique across all RMP processes in the

internetwork.

A token ring is the basic unit of group communication and message ordering in RMP. and consists of a group of RMP

processes that are receiving packets sent to a given IP Multicast address and port. Each RMP process may be a member

of multiple token rings, and non-members can reliably send to a token ring and get optional replies from members of a

token ring using an RPC like mechanism. Each token ring has a token ring name. which is a text string similar to those

used in current Internet host names. Unlike host names, a token ring name identiftes a group of members instead of a

single host. A token ring identified by a token ring name is not guaranteed to be unique across an entire internetwork, as

two groups of RMP processes that join a given IP Multicast address and port with a given token ring name may not

overlap due to network partitions or due to non-global multicast time to live levels (TYLs) on packets sent to this address.
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The mapping of token ring names to IP MuRicast {address. port, TIT,} tuples may either be handled by an external

multicast address allocation authority such as [PEA94]. or it may be handled by RMP. A suggested default mapping

policy is to use a hash function to turn the text string into one of a range of mulficast addresses (a subset of the class DIP

address space, say 24 bits) and a 16 bit port number. The TIT, for packets sent to a token ring will be negotiated as part

of the membership alg(xithms for a token ring. Hash collisions to the same port and address are handled by using

guaranteed unique toimn list IDs. as described below.

The membership of a token ring will usually change over time. A given list d the members of a token ring is called a

token list. A token list is always created by a single RMP process, and is identified by a token list 119. Similarly to

GrapevinefBLNS82]. a token ilst ID consists of an ID that is unique across the breadth of the internetwork concatenated

with a counter that is unique across the maximum TIL for that ID. The Fast of a token list ID cxmsists of the RMP

process ID of the process that created the token list, and the second half is based on a counter. One counter is maintained

for each RMP process. When an RMP process starts, it initializes its counter to the current time in milliseconds, and it

increments this counter every time it creates a new token list. By not allowing an RMP process to generate more than one

token list per millisecond the process has been in existence and by limiting the lifetime of a token list to 231 millisec(mds

(just under 25 days), we guarantee that a token list ID is unique as long as the clocks of the generating machines are

stable. This guarantee eliminates the need to keep the IP Multicast address and port for a token ring unique across

different token rings, although it is desirable to avoid these address collisions. In the case of coLlisions to the same

TOken ring name: wb.sessionl Jeff.net
Token list ID: a.uiuc.edu:5000:123000
Mullicast address: 233.9.8.7.6543
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Token ring name: oodb2.acsl.uiuc.edu
Taken list ID: b.uiuc.edu:5000:120000
Multicasl address: 233.1.2.3:456

Rgure 2.1: RMP entities
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address and port. RMP will use the token list IDs to filter the packets at each RMP process.

Figure 2.1 shows an example of these entities for a sample scenario with two token rings and five RMP processes

spread over three hosts. A new token list ID is generated for both token rings after a member is removed frcan each.

Notice that the new ID does not have to be created by the same RMP process that created the last one for that ring.

2.2 Atomicity, reliability and ordering guarantees

Different multicast applications require many different levels of atomicity, reliability, and ordering guarantees. These

applications also require different guarantees in the face of site failures or partitions. For example, a CSCW application

may need packets to be reliably delivered in order from each source but without total orderins, and will continue ev0m if

some sites fail or partition away. On the other hand. a distributed database may require that all packets be delivered in

the same total order at all sites, even if some of them partition away. RMP supports a wide range of guarantees on

packets by allowing different QoS levels to be specified for packets being sent to a token ring and by allowing applications

to specify the minimum size of a partition that can continue to function in the face of failures. The selectable QoS levels

are described in figure 2.2. All of the QoS levels build upon previous levels, providing any guarantees that a smaller level

provides.

The basic selectable RMP QoS levels axe unreliable, reliable, source ordered, and total ordered. They are provided by

differing the time at when packets are delivered and enabling or disabling the duplicate detection. NACK. and ACK

policies. While throughput should remain similar for the different QoS levels, higher QoS levels increase the latency of

packet delivery. For example, in the common case of few dropped packets, source ordered packets have about the same

latency as unordered packets, and totally ordered packets have about twice the latency of either.

The unreliable QoS is most similar to UDP traffic. An unreliable packet will be delivered O, 1. or more times to a

destination and there are no ordering guarantees on delivery. A reliably delivered packet will be delivered 1 or more

times to each destination. This is particularly useful for providing unordered client-server RPC semantics, as explained

in a later section. The source ordered QoS provides the equivalent guarantees of running a TCP socket from each source

to each destination. Packets arrive exactly once at each destination in the same order as they were sent from the sender.

Total ordered delivery serializes all of the packets to a token ring. delivering all of the packets in the same older at all
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members of the tins. This QoS is equivalent to running a TCP socket from each souce into a central bus which

serializes the packets and then sends them out through a separate TCP socket to each destination. Totally ordered packets

are also causally ordered, as per Lamport's definition[Lamp78]. All of the QoS levels of source ordered and higher

provideatmnicdeliverytoallmembersofthegroupthatdo notpartitionorfailaway fromthetokenringfora sufficient

periodoftime(say30 seconds).Ifsomesitespartitionawayorfail,amessagemay havebeendeliveredtothesesitesbut

not be delivered to any _ the remaining sites. However. if any member of the remaining partition got a packet, all of the

remaining sites will also get it, with the ordering guarantees preserved. Ordering guarantees between packets of different

QoS levels are determined by the lowest QoS of the packets in question. For example, for a set of packets S1 with source

ordered QoS and a set of packets $2 with totally ordered QoS. the best guarantee that is provided over the union of the

two sets is source ordering.

ISIS first defined the notion of virtual synchrony[BSS91]. [Birman93]. Virtual synchrony often allows a distributed

application to execute as if its communication was synchronous, when it is actually asynchronous. The k_y requirement

for virtual synchrony is that all sites see the same set of messages before and after a group membership change. In other

words, for a given set of packets delivered to a group, a membership change operation will partition these packets into the

QoS Name and Service Guarantees

Unreliable Packets are delivered 0, 1 or more times,
in any order.
Packets are delivered at least once, in
any order.

Unordered

Source

ordered

Totally
ordered

K resilient

Major y
resilient

Totally
resilient

Packets are delivered exactly once, in the
order they were sent from each source.

Source ordered, plus all totally ordered
packets are delivered in the same order at
all sites.

Totally ordered, plus delivery is atomic at
all sites that do not fail or part,ion,
provided that no more than K sites fail or
partition at once.
K resilient, with K set to (MaxN+l)/2,
where MaxN is the highest number of
sites in the token ring for any token list in
theOrdedngQ
K resilient, with K set to N.

Delivery "13me
Immediately upon receipt of a data packet

Immediately upon receipt of a data packet, with
missing packets detected and rerequested
After all of the data packets from the same
source and with smaller sequence numbers
have been delivered

After all of the data packets with smaller
timestamps have been delivered

After all of the data packets with smaller
timestamps have been delivered and the token
has been transferred K-1 times

Same as K-Resilient, but also requires that only
a majority partition can continue functioning.

Same as Majority Resilient

Figure 2.2: RMP QoS levels
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same two sets at all sites, and all packets in the first set will be delivered at all sites before any packets are delivered in the

second set. RMP provides virtual sym:,hrony for packets that have a QoS of at least totally ordered. This is done by

implementing each membership change as a packet with a totally ordered QoS.

Total ordering and atomicity of delivery is only guaranteed if no sites fail or partition away from a token ring. To

provide guarantees on atomicity and total ordering in the face of failures, higher levels of QoS are provided. These

include K-resiliency, majority resiliency, and total resiliency. These guarantees are provided primarily by requiring sites

to wait to deliver packets until they have seen that the token has been passed at least K times after they would have

normally delivered a packet. Because each site that accepts the token must have all previous packets, by enforcing this

delay, RMP ensures that both the current token site and the K previous token sites have that packet when it is delivered.

This allows up to K sites to crash or partition away and still guarantee atomicity of packet delivery. K-resilient

guarantees are particularly useful for applications that operate with a low probability of failure on a network that can't

partition, such as a single LAN.

The Totem worldAMSM92] has pointed out that virtual sync,htony as defined by ISIS only applies in the case where

groups do not partition. When partitions occur, it is possible that the two sets may see a different total order of packet

delivery, and packets delivered to a minority partition may not get delivered to a majority partition. To get around this,

they have defined another condition, extended virtual synchrony, which they provide. Extended virtual synchrony

provides the same guarantees as virtual synchrony, but operates even in the presence of arbitrary group partitions. RMP

provides extended virtual synchrony through the use of majority resilience and total resilience. Unlike Totem, RMP

requires that only a single partition be allowed to proceed in the case of network partitioning. This is provided by only

allowing a partition to continue operation after a failure if it contains at least a majority of the processes that were in the

ring. To calculate the number of processes that were in the token ring. the maximum number of processes in any token

list that is currently being held for possible retransmission is used. The minimum partition size is specifu_d on a per

token ring basis, so that if a given token ring is not using any majority or totally resilient messages, all partitions of it can

be allowed to proceed if desired. Majority resilience guarantees that the total ordering of packets is kept consistent

between all partitions, and that all of the sites that remain in the majority partition will atomically deliver any packet that

has been delivered at any of the sites in the token ring. However. in the face of partitions and failures, the exact set of
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thesesitesisnotknown atdeliverytime.To getaroundthis,Totem definesandprovidessafedelivery,whichguarantees

thatwhen a packetisdelivered,ithas beenreceivedby allofthehostsinthecurrenttokenfist,and willbedeliveredby

eachofthesehostssolongastheydo notfail.Unlikemajorityresilience,safedeliverywilldeliverapacketatallsitesin

the current token fist irregardless of network parititions. RMP provides this tllrough total resiliency, where K is always

set to the current size of the token ring. After each massage has been passed around the entire token ring. all sites must

have it and so it can be safely delivered.

2.3 Communication model

There are two main opuous in current communication addressing. Protocols such as TCP and UDP require explicit

naming of the destinations of communication, while systems such as Grapevine[BLNS82] and the MessageBus[Carrol193]

allow implicit naming through a publisher/subscriber model of communication. RMP supports both approaches. RMP

processes usually join or "subscribe" to a group by specifying the name of a token ring to join. and other processes

"publish" or send messages to this group by using the token ring name or a token list ID associated with the name. When

this model is used. messages sent to the group name are delivered automatically to all RMP processes, if any. that are

members of that token ring, so no explicit knowledge of the membership of a group is needed. As explained above. RMP

does this by mapping token ring names into {multicast address, port, TIL} tuples that are used to locate other members

of the token ring.

Instead of specifying a token ring by its name, RMP processes may instead unicast a packet to another RMP process

(specified by an IP address and a UDP port) that is a member of the token ring and request that this site forward the

packet for it. This can both be used to send packets to a token ring from a non-member or non-multicast capable member

of that ring. and to join a ring based on a known RMP process ID instead of an IPM address and port. This addressing is

similar to the explicit naming used in most point to point protocols. When coupled with the ability of members to query

the current membership of a token ring at any time and the feature that members are notified when the ring membership

changes, RMP allows processes to exert explicit control over group naming and membership when desired.

In addition to the publisher/subscriber model of group commumcation, RMP also supports the client-server model of

communication by allowing non-members to send to a ring (using either implicit or explicit addressing) and to optionally

get replies using a multi-RPC mechanism. When a client sends a packet to the members of a token ring (the servers), it
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can specify the resIxmse type it expects. It will usually either request an acknowledgment or a reply, although it can also

specify neither or both. An acknowledgment is sent back by a single member of the ring (the current token site) after the

packet is delivered to the token ring with the requested ordering, atomicity, and reliability guarantees. A reply also comes

from a single member of the token ring, but is produced by an application using RMP instead of the RMP code itself. A

reply will usually contain data that is returned to the client. These multi-RPC packets are asynchronous and have

integrated flow and congestion conlrol.

When a packet is sent to a token ring, an optional handier number may be specified for the packet. Handler numbers

are used to generate replies to member data packets and to multi-RPC packets. In the current implementation of RMP.

there are six different handier numbers per token ring. If one of the RMP processes in the token ring is the handier for

that handier number, it will be notified upon delivery of the packet that it is supposed to respond to it. This allows

multiple applications that provide a given service to all be in a token ring, and at most one of them will respond to any

given request. The handler service is provided through the use of a set of mutually exclusive handier locks. A member of

a token ring can request a handler lock, and it will only be granted if no other site currently holds that lock. Once

granted, it is the handier for packets sent to the handier number associated with that lock until it releases the handier lock

or is removed from the token list due to a failure or a partition. Handler locks can also be used for any other type of

service or distributed application that needs mutually exclusive locks. Handier locks are very efficient, needing the

equivalent of only a single totally ordered message for each lock operation and each release operation.

2.4 Non muiticast capable processes

For efficiency, RMP should be run on top of an unreliable multicast service. However, for flexibility, it also supports

the use of hosts that are not multicast capable. This is done through the use of forwarding and multicast capable flags.

Each RMP process has to have a UDP/IP port open for sending and receiving packets in addition to any IP Multicast

addresses it is using. Any packet that is sent to the UDP/IP port for an RMP p_ can have a forwarding flag turned

on. This flag directs the receiving process to copy it to the IP Multicast address for that group, with local loopback

disabled.

Some of the packets sent in RMP are unicast to theix destinations. As each RMP process is identified by its unicast

address, these addresses are already stored in the token list for a token ring. Each of these RMP process IDs in the token
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list c,catains an additional mulficast capable flag denoting whether _ not they can receive IP Multicast packets. When a

multicast is sent to a token ring, if any members are not multlcast capable, the sender must also send a unicast to each of

these destinations. In the rest of the paper, wherever we mention a multicast from a group member, we are referring to

this ex_..nded notion of mulfiCaSL Because the case of having all sites be multicast capable can easily be stored as a flag at

each site. this common case will pay hardly any penalty for the exlra flexibility this service provides.

3 Algorithms

RMP provides all of these services through a set of five main algorithms. The token ring algorithm handles the

delivery of packets to the members of a token list. When a membership change request or a handler lock request occurs

on a token ring, the token list change algorithm creates a new token list and updates it at each member of the ring. When

failures occur in a token ring, the reformation algorithm polls the current members of a token ring, synchronizes them to

the same point, creates a new token list for that ring, and commits it at each member. Non members can participate in a

token ring using the multi-RPC algorithm. Finally. all of the senders in RMP use a flow and congestioa control

Packet Type [ DesorlpUon
Data Packet I Contains data to the token ring from a token ring member

Control Packets
ACK

Confirm

NACK
New List

List Change Request

Provides positive acknowledgment and total ordering for one or more data
packets and/or non-member data packets, as well as passing the token and
confirming that the token has been accepted by the site that sent the ACK
Provides positive acknowledgment to the last token site that the new token
site has accepted the token. This function is usually performed as part of an
ACK.

Requests retransmission of one or more packets
Contains a new token list and its own ACK. It is also useO during failure
recovery.

Requests a change tothecurrenttokenlist

Failure Recovery Packets
Recovery Start

Recovery Vote

Recovery ACK New
Ust

Recovery Abort

Sent out when a failure is detected to start the recovery 10¢ocess. Is sent
repeatedly by the initiator until the sites in new token ring are synced to the
same point.
The response to a recovery start packet, notifying the initiator of the sync
)oint for this member of the new list

Acknowledges receipt of the New Ust packet for the new token list

Provides notification that an error in the reformation protocol occurred
Non Member Packets

Non Member Data [ A data packet from a process which is not a member of the token ring
Non Member ACK I An ACK or response to a non-membar data packet.
Figure 3.1: RMP packet types
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algorithm based on the Van Jacobson TCP congestion control algorithms.

3.1 Packet types

RMP uses ten packet types in its communication. These are listed in figure 3.1. The token ring algorithm uses Data

packets, ACKs, ConfLrm packets, and NACKs. The token list change algorithm uses New List and List Change Request

packets. The recovery algorithm uses four recovery packet types as well as New List packets. The mulfi-RI_ algccithm

uses Non Member Data packets and Non Member ACK packets. Flow control and congestion control is based on ACK

packets and NACK packets.

3.2 Token ring algorithm

The biggest decision in building a reliable multicast protocol is how to guarantee reliability. Traditiomfl protocols use

positive acknowledgments (ACKs) from the destination to acknowledge str,cessful receipt of a packet. This approach

does not scale well to a multicast system, because each destination has to send an ACK for each packet or set of packets.

This largely defeats the advantage of using multicast packets, because it decreases both the efficiency and the performance

of the protocol. Even though these acknowledgments are small, because they all are sent at the same time they can cause

network congestion. In addition, having to process an ACK from each destination increases the load on the sender and

decreases the performance of the protocol. To get around this. many systems use negative acknowledgments (NACKs).

Negative acknowledgments shift the burden of error detection from the source to the destinations. Packets are stamped

with sequential sequence numbers which destinations use to provide reliable delivery by detecting gaps in the sequence

numbers and requesting retransmission of the packets corresponding to the gaps. Because the information that a packet

has been received is never propagated back to the sender, the senders in these protocols do not ever know for certain that

a destination has received a packet. Because of this, senders have to indefinitely keep a copy of each packet sent ff the

protocol is to be considered truly reliable. In addition, a lost packet will not be detected until another packet is received

successfully, which may take a long time if the packet is the last to be sent to the ring for a while. Because of these

problems, the token ring algorithm uses a combination of these two approaches. This algorithm is a modified version of

the work originally done by Chang and Maxemchuk[ChMa84], [ChMa83].
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In RMP, all data packets are stamped with a tuple {RMP process ID, sequence number for that process, QoS level for

the packet} which uniquely identifies each data packet. Data packets are multicast to the members of the token ring and

are handled by a primary receiver called the token site. When the token site receives one or more data packets, it

multicasts a positive ACK out to the members of the token ring. In certain cases, an ACK may be sent out that doean't

acknowledge any data packets (see below). Each ACK contains zero or more identifying mples for Data packets, along

with a global seque.tw.e number, called a timesmmp, which serializes all of the ACK, Data, and New List packets in a

token ring. For a given ACK, the ACK is given the value of the timestamp, and each data packet ordered by the ACK is

given a consecutive timestamp. For example, an ACK that orders two data packets might have a timestamp of 8. In this

case, the ftrst data packet would receive timestamp 9 and the second would be numbered 10.

Each ACK performs a number of functions:

• It lets the sender know that the current token site has received the packet. In this way it fimctions as a traditional

positive acknowledgment to the sender.

• The timestamps in the ACKs provide a total and causal ordering on messages.

• The timestamps also provide a global basis for the detection of dropped packets. The receivers can detect any missed

packets, both ACKs, Data, and New List packets, through these global sequence numbers. With multiple simultaneous

senders, this provides for faster detection of lost packets than does detection based on sequezc.e numbers from each

sender.

As with other NACK based solutions, tiffs does not solve the problem of guaranteeing the detection of dropped packets

by the destinations and the corresponding problem of unlimited buffer space. To solve this problem, the token site is

passed among all the processes in the token ring. Along with the other functionality of an ACK, each ACK also serves to

pass the token to the next member of the ring. Not only does rotating the token balance the load of the ACKs between the

sites, it also solves the buffer problem. Given N members of a ring, once the token has been rotated N times, the token

site knows that all messages with a timestamp at least N smaller than the current timestamp have been received at all

destinations, and so the token site no longer needs to store these messages for retran._mi._sion.

To pass the token, a field in each ACK names the current token site that issued the ACK and the new token site.

When a RMP process receives an ACK naming it as the new token site, it checks to see if it has received all of the packets
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with time,stamps up to that of the last packet ordered by this ACK. ff any. If not. it uses NACKs to request them from the

previous token site. Once the process has all the packets, it declares itself to be the new token site. Passing the token

requires positive acknowledgment, so the new token site must let the old token site know thatit has accepted the token by

either multicasting out a new ACK. or by sending the old site a unicast Confuan packet.

Changes in the token llst are requested by a process with a List Change Request packet, which is handled similarly to

a data packet. However. instead of sending an ACK on a List Change Request packet, the token site processes the change

and sends out a New List packet. A New List packet serves as both a data packet containing information for the token

ring and as its own ACK.

Ordering of packets, detection of missing packets, and buffering of packets for retransmissio_ is all handled with the

use of two lists, the DataList and the OrderingQ. The DataList contains Data and List Change Request packets that have

not yet been ordered. The OrderingQ contains slots, each of which holds a pointer to a packet, the delivery status of the

packet (Missing, Requested. Received, or Delivered) the {source, sequence number, QoS } identifying tuple for the packet.

and the timestamp for the packet. The fields in a slot are not all used at all times. The slots in the OrderingQ always

have monotonically increasing timestamps.

When a Data or List Change Request packet is received, it is placed into the DataList. When an ACK or a New List

packet is received, it is placed in the OrderingQ. creating one or more slots on the end of the queue if necessary. List

Change Request packets are never placed into the OrderingQ, as they are transformed into New List packets when they

axe ordered. Each packet occupies exactly one slot in the OrderingQ. When an ACK is placed in a slot, the tuples it

contains identifyin 8 data packets are copied to the slots immediately succeeding it, creating new slots if necessary.

Whenever a Data or ACK packet is received, the OrderingQ is scanned through once to match up Data packets in the

DataList with empty slots that have been created by an ACK. When a slot is found that has the same identifying mple as

a Data packet in the DataList, the packet is moved from the DataList to that slot. When holes occur in the OrderingQ,

NACK packets are sent out. requesting retransmission of these packets. The exact policy for determining the destination

of the NACKs and whether or not the retransmissions should be unicast or multicast is a topic for continuing research.

The default policy is to send NACKs either to the sender of the packet, if known, or to multicast them to the token ring

and name the last known token site as the site to handle them. If there is no response to a NACK within the specified
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timeout, a site will resend the NACK to a different site. This will continue up to a constant threshold, after which point

the NACK will be multicast to the entire ring for any site to respond to.

A site is not allowed to accept the token until there are no e.mpty slots in the OrderingQ up to the last data packet

ordered by the ACK naming this site as the new token site. Because of this. the OrderingQ does not need to contain any

more than N ACKs and New List packets, where N is the current number of sites in the token ring. When there are more

than N ACKs and New List packets in the OrderingQ, the slots at the front of the queue and their corresponding packets

aredequeued and freeduntilthisconditionismet.

In addition to botmdi_ the buffer space needed in a ring, passing the token guarantees that site failures and dropped

messages are detected within N messages. In order to bound the amount of time before a lost packet or a failed site is

detected, RMP sends NULL ACKs, which pass the token but do not order any packets, if the token site does not receive a

message within a given period of time. With RMP, this is currently on the order of 1 second. When a ring goes quiescent

for an extended period of time, the token is passed all the way around the ring once and then stops. At this point, all of

the sites are guaranteed to have all of the messages.

If a site repeatedly fails to receive the proper restxmse to one of the actions that requires a positive acknowledgment, it

declares the site dead and rims the reformation protocol, described below in section 3.4.

3.3 Token list changes

A new token list is created whenever a RMP process joins a token ring, leaves a token ring, is granted a handler lock

for a token ring, or releases a lock for a token ring. Sites that fail or partition away are handled by the fault recovery

algorithm, described below. For the other list changes, a site requests the change by multicastmg an unreliable List

Change Request packet to the group. List Change Request packets require positive acknowledgment, and are resent

periodically until this is received or a fault in the ring is declared. The current token site serializes these change requests

and sends out New List packets in response.

List Change Request packets are handled similarly to Data packets, except that when the token site wotfld normally

send an ACK packet to order and acknowledge a Data packet, it instead generates a New List packet. When a token site

creates a New List packet, it makes the requested change to the current token list, if possible, and puts this list into the

second half of the New List packet. It Fills the first half of the New List packet with the fields of an ACK, includin 8 a
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timestamp ordering the New List packet and the ID of the next token site. In this way, a New List packet acts as both a

totally ordered Data packet whose destination is RMP instead of an application, and as its own ACK. When a New List

packet is received, it is put on the OrderingQ, and then broken down into its two halves. The ACK haft is processed fh'st,

which will put the New List packet into the OrderingQ. From this poinL it is handled like a data packet. When the data

half of the New List packet would normally be delivered m the RMP process, it is instead committed and a notification of

the token list change is delivered to the application.

When a RMP process is joining a token ring, it can send the List Change Request packet to either the IP Multicast

address and port for a token ring, or it can send it to the IP address and port of a known member of a token ring. In the

latter case, the process sets a forwarding flag on the packet, and when the packet is received it is forwarded to the token

ring. The joining member will repeamdly send the List Change Request packet until it receives a New List packet

naming it as the new token site. Because the joining process may not yet know the IP Muldcast address for the token

ring, this New List packet is also unicast to the joining pmcess's UDP address and port, and it contains the multicast

address and port for the token tin 8. A new member is always added in to the token list directly after the current token

site. This forces the new member to take an immediate role in the token ring, providing positive acknowledgment that it

has joined the ring and started processing messages at the correct time. If no New List packet is received after a certain

number of retries to a token ring, the new RMP process creates a new token ring with only itself in it. If a ring does

actually exist for that token ring name and mullicast address, but is currently umeachable due to a network partition, a

second ring may form. Because token ring IDs are unique, even if this partition heals, the rings will never overlap or

merge.

When a site removes itself from a ring. it must remain a member of the token ring until after it has seen and

committed the new token list removing it from the ring. After leaving the ring. it must continue to process NACK

requests and keep track of token passes until it no longer has any packets from the old list that it must hold for

retransmission. A packet must be held for retransmission be an exiting site while its resiliency level is greater than or

equal to the number of times it knows that the token has been passed since it last held the token.
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List Change Request packets requesting a handler lock will not be granted if another process already holds that

handler lock when the token list processes the request. If a request is denied, a New List packet is still generated, but the

token list it contains will be the same one the token ring was using before.

3.4 Fault recovery

There are four types d packets in the normal mode of the RMP protocol which require positive acknowledgmentData

packets, ACKs. List Change Requests. and NACKs. If at any time a RMP process repeatedly times out and resends one

of these packets more than a set number of times (ten in the current implementation) it decides that a failure has occunv, d

and starts the fault recovery protocol. The initiator of the fault recovery protocol repeatedly polls the sites in the token

ring to determine who is still active and reachable, generates a new token list, makes sure that all sites in the new token

list have the same set of packets in their OrderingQ, and then commits this list at all sites in the new list using a two

phase commit protocol. Because token passes are one of the actions that require positive acknowledgment, a failure will

be detected within N token passes.

The fault recovery protocol is broken into two halves--creating and synchronizing the list, and committing the list. In

the fast half. the initiator repeatedly queries the other sites in the old token list to see if they are up, to see what the

highest version of token list they have seem is. and to Fred out what their current sync point is. The sync point for a RMP

process is defined as the highest consecutive timestamp it has in its OrderingQ plus the highest consecutive sequence

number it has received from each site in the old list. This information corresponds to the timestamp of the highest packet

that a RMP process has delivered with a QoS of at least totally ordered concatenated with the highest sequence number of

a packet delivered with a QoS of at least source ordered from each RMP process in the ring. By responding to a query, a

site provides the requested information and coufums that it has joined the new token list the initiator is creating. A

process is only allowed to join a token list with a larger version number than any it has seen before, and it is only allowed

to join one list at a time. If any of these conditions are not met. each process detectin8 the error multicasts an ab_

reformation packet out, aborts its own reformation, and waits for a random timeout period or another reformation start

packet from another site before restarting.

The goal of the fast phase is to have as many of the old sites as possible join the same new token list and reach the

same sync point. If some of the sites are missing packets, this may be an iterative process. If the initiator receives a

DRAFT COPY SUBMITTED TO 1995 INFOCOM--PLEASE DO NOT CIRCULATE 17



higher sync point from another process than the one it has, it stores this as the new sync point for the list and forwards

this sync point to the other processes. All sites that are missing packets request those packets and send higher sync points

as they receive them. After either all but one of the old sites in the token list have responded and been brousht to the

same sync point, or after no further progress has been made towards the shared sync point after a set number of retries,

the initiator creates a new list with all of the members of the old list that have reached the same sync point. If the

initiator receives a packet from another initiator with a smaller or equal version number, it sends back a packet notifying

that initiator that it shouJd abort its reformation. If the initiator receives a packet from another initiator with a larger

version number or if it is not itself able to reach the shared sync point, it sends out an abort packet to the members of the

list and aborts its own reformation process, setting a random timeout before it starts the reformation again.

Once the initiator has created a new list, it must check that this new list has at least the minimum number of sites

specifted in the old version of the token list. When joining a token list, each site specifies the nfinimum number of sites

that must remain in a partition in the case of a failure. The minimum size for the new token ring is the maximum of

these values for each member in the old ring. This value can be either a constant, a symbolic constant specifyin 8 the

majority of the members of the old list, or a constant for all of the members in the old list. In the latter case, any failure

will always cause the ring to stop operation.

If this test is passed, the initiator creams the new list and must commit it at all of the sites. First. it multicasts a New

List packet to all of the members of the new list and requests a reply from each of them. Once it has received these

acknowledgments from each member, it commits the new list itself and makes itself the new token site. If it has any Data

packets waiting to be acknowledged, it sends out an ACK on these packets. Otherwise, it sends a NULL ACK to pass the

token. After each of the members of the new list receive this or any other ACK to the new list. they also commit the new

list and start processing packets as normal.

3.5 Muiti-RPC delivery

The client server model of communication has become widely accepted as a powerful way of providin8 sexvices to

users. While RMP could supportthismodel simply by having allclientsand serversjoin a token ring.thisisoften

inefficientand willlimitthe scalabilityof client/servergroups. As an alternative.RMP providesfacilitiesfor RMP

processesthat are not members of a token ring to use a multi-RPC algorithmto send data to a ring and to receive
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acknowledgments of successful delivery and/or responses from a handler. This is a powerful feature, for it atlows

multiple servers to exist in a token ring. and all of them can get messages from clients. These messages can be

automatically acknowledged, or a single member d the token ring can be selected to handle the request and reply to it.

Because these Non Member Data packets can be delivered with all d the QoS levels d a Data packet sent from a token

ring member, multi-R_PC packets can be delivered with all of the reliability, ordering and atomicity guarantees d a

member data packeL

The two main changes between a Data packet and a Non Member Data packet are that a Non Member Data packet can

include a token ring name instead of a token list ID and it includes two flags that aid in getting acknowledgments of

responses. Since a non member will often not know the current token list ID for a token ring, it can instead specify the

textual representation for the ring. When it gets a reply back from the token ring, it can cache the token list ID included

in this reply and use this in subsequent Non Member Data packets. The first flag specifies whether or not an

acknowledgment should be sent in response to the Non Member Data packet. If so, then when the current token site

delivers the Non Member Data packet to its application, it unicasts a Non Membex ACK to the sender. Because the

sender has the responsibility for making sure the packet is delivered reliably, this acknowledgement may need to be sent

to the sender multiple times. This is done by sending another copy of the Non Member ACK each time a dupLicate of a

Non Member Data packet that has already been delivered is received. The second flag provides the same repeat reply

functionality but for replies instead of acknowledgements. When this flag is turned on, the Non Member Data packet will

be delivered multiple times to the application. This is usually used in conjunction with a handler number for the packet.

If a handler number is specified, the member of the token ring that holds that handler lock will be responsible for replying

to the Non Member Data packet. This reply will usually be used as the ACK for this multi-RPC call, and must be sent as

many times as necessary until the non member receives it.

In order to provide source ordered delivery guarantees on non member packets, the members of a token ring have to

keep track of the highest delivered sequence number from each non-member. These are stored in the token fist along

with the sequence numbers for members, but are marked with a non-member flag. Because of this, they are sent out as

part of each New List packet, and each joining member will receive a copy of these sequence numbers. It is the

responsibility of a non member that is sending source oxdered packets to set a flag on the fast packet sent to a token ring,
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notifying the destinations that it is the fast packet. This nofif'zs the members that they can create a sequence number for

this process starting with this packet. Optionally. these non-member sequence numbers may be flushed if no packet has

been received from that site within two times the maximum TIL of a packet in the inmmetwork. If this policy is used,

then non-member senders must keep track of when their sequence numbers may have been flushed out and reset the fast

packet flag when dais occurs.

3.6 Flow and congestion control

Flow and congestion control policies for reliable multicast protocols arc an open problem. Because reliable multicast

protocols primarily use NACKs for error detection, the.re is no existing expficit feedback path with which destinations can

signal losses or low buffer space to the senders. In addition, the throughput for a multicast group should be divided up

between the members of the group who are trying to send. but the policy for this division is usually dynamic and not

known in advance. Because of this, the flow and congestion control policies used by RMP are designed to be orthogonal

to the rest of the protocol. Flow and congestion control policies can be inserted easily into the protocol, and different

policies can be used in different environments. As the default, we propose a modified sliding window protocol based on

the Van Jacobson algorithms used in TCP [Jacobson88].

Two of the most common schemes used today for flow control and congestion control are sliding windows and leaky

buckets. Leaky bucket schemes, which enforce explicit rate controls on each sender, are classified as predictive controls.

They try to predict how much bandwidth each sender can use at any given time. and then mandate that the senders do not

exceed this. Calculating the values for these rates is difficult, and they must divide up the bandwidth between the senders

on a relatively static basis. This decreases the flexibility and throughput attainable by these schemes. In addition, it is

diffu:ult with a leaky bucket scheme for the destinations to signal back that their buffers have been ovemm if a destination

process stalls for some reason. For the new very high speed WAN networks that are being proposed, the cost of

congestion can be very high because a sender can have hundreds of packets in transit at once. For these networks, a leaky

bucket or rate control scheme may be necessary.

For networks that have a lower latency bandwidth product, the drawbacks of a leaky bucket scheme may not be

necessary. For RMP, we propose an adaptive flow and congestion control scheme based on a modified sliding window

scheme. This algorithm treats flow control and congestion control as the same problem and solves it in part by using
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some of the algorithms proposed by Van Jacobson for TCP. Each sender maintains a window of how many bytes it can

have in transit at once. When a packet is sent, the window size is decreased by the number of bytes sent, and when the

fLrSt copy of an ACK for a packet is received the window size is increased by the same amount. This causes the flow

control feedback to be rotated among members. If a site is overrun and runs out of buffers, when it gets the token site it

can delay acknowledging any more packets until it can process incoming packets again. If the RMP process delays too

long. however, it will be considered to be faulty, and it will be reanoved from the token ring. This is usually desirable

behavior, as otherwise the other members of the ring will block indefinitely on this one site.

The bulk of the flow and congestion control is provided by controlling the maximum size of the window at each

sender. The maximum size of this window grows according to the slow start algorithm proposed by Van Jacobson, and is

decreased when an expired retransmission alarm occurs. The Van Jacobson algorithms were originally designed to just

provide congestion control. However. because they provide such good adaptive congestion control. RMP also uses them

for additional flow control by treating NACKs as another signal of congestion.

The Van Jacobson algorithms for congestion control that are used by RMP include:

(1) round-trip-time variance estimation

(2) slow start

(3) dynamic window sizing on congestion

(4) exponential retrammit timer backo_ff

Round-trip-time variance estimation comes from the observation that when a network path becomes congested, the

variance on packet latency becomes very high compared with the average. "If the network is running at 75% of

capacity...one should expect the round-trip-time to vary by a factor of 16."[Jacob88] The proposed algorithm continually

estimates this variance, and eliminates most of the spurious retrammissions while still maintaining fimoouts small

enough to detect dropped packets quickly.

The slow start algorithm (2) is used to increase the window size from 1 packet to the maximum window size that the

receiver allows that does not cause congestion, as calculated by algorithm (3). This is done by incrementing the window

size by one packet each time that an ACK is received. Because the window size is constantly growing, slow-start actually

increases the window size fairly quickly. It wiLl increase from I to W on a network with latency L in Llog2W time.
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With the assertion that the timer algorithm almost completely avoids retransmissions that axe not due to lost packets

and with the observation that most lost packets are due to congestion instead of errors, it follows that most expired timers

signal congestion. Algorithm (3) uses this to respond aggressively to this congestion by exponentially reducing the

window size by a constant number (currently 50%) each time that a timer expires. The original protocol actually uses a

two-level bound on this window in the face of congestion. It reduces the window size to one p_ket any time an error

occurs, uses slow start to quickly build up to 50% of the level before the error, and then uses a slower linear increase to

buildup from there. RMP only reducesthe currentwindow sizeby 50% becauseRMP modifies the packet lengths

accordingtothewindow size.The algorithmused forthiscausesslow starttoreach a window sizeW (assuming W is

lessthantwo timesthemaximum packetsize)inOf W) timeinsteadofO(logW) time.and thismakes thecostofreducing

the window all the way to 1 packet too high.

Finally, the exponential retransmit timer backoff is used to double the timer each time it expires, resetting it to the

valuecalculatedby (I)when an ACK isfinallyreceived.Both thisand algorithm(I)are appliedto thetimersforallof

thepacketsthatrequirepositiveacknowledgment. Along with furtherdecreasingcongestion,thisprovidesan efficient

detectionmethod forfailedsites.The maximum valuefor a timerisclamped ata certainvalue (currently2 seconds).

Then up toN retransmissions(currentlyI0) areallowedbeforea siteisdeclareddead. With the currentlyimplemented

valuesthispolicydetectsfailuresinnearbysiteswithin5 seconds,and distantsiteswithin15-20 seconds.

By usingNACKs as signalsofdroppedpackets,thesealgorithmsalsoprovideeffectiveflow control.Ifa destination

gets overrun by the senders,itwilldrop one or more packets. This willusuallybe detectedby the destinationvery

rapidly.When thisoccurs,thedestinationeitherunicastsa NACK tothesenderor multicastsa NACK back tothe group.

In additiontorequestinga retransmissionofthepacketfrom thecurrenttokensite.thisNACK alsoinformsthe original

sender(who isnamed intheNACK) thata destinationhas losta packetfrom thatsender.This istreatedthe same asan

expiredtimerdue toa lostpacket,and causesthesendertodecreaseitswindow sizeby 50%. In ordertomake sure that

multipleNACKs on thesame packetdo not each decreasethe window size.a cache of the sequence numbers of the last

three messages sent by this site that were dropped by another site is maintained by the sender. Incoming NACKs are

compared against this cache, and the window size is only modified if a NACK for this message isn't in the cache.
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//Avoid "Silly Window" effect

if (A < MIN_PACKET && A < W)

Delay sending packet until an ACK is
received

//Send up to 1/2 of the window at a time

S = min(P, W/2);

//Send at least MIN_PACKET bytes

S = max(S, MIN PACKET);

//Can only send up to A bytes

S = min(S, A);

//Reduce effect of lost packets

S = min(S, MAX_PACKET);

A problem that RMP faces with flow and congestion control is that the

rotating token site introduces a higher overhead per acknowledgment than

traditional protocols such as TCP. This is compounded by the protocol

being more complicated than TCP and thus requiring more processing per

packet, To solve this problem. RMP uses larger packet sizes than does TCP.

In an error free environment, having the IP or IP Multicasting layer do the

Rgure 3.2: Packet Size Algorithm
fragmentation and reassembly is more efficient than having RMP do it. If

errors occur, the window size quickly drops to a single minimum size packet. The algorithm to determine the size of the

packet to be sent out (S), given the current window size (W), the available space in the window (A), and the offered

packet size (P). is shown in figure 3.2. The critical step in this algorithm is that up to haft of the available window is sent

at a time until the maximum packet size has been reached. This trades off a small amount of network utilization in the

case of errors for typically higher efficiency of handling packets and higher throughput.

3.7 Implementation options

RMP is designed to be implementable in either user-space or kernel space. There are numerous pros and cons to each

approach, so RMP does not enforce either approach. Traditional protocols have been implemented as monolithic entities

in the kernel. This is motivated primarily out of concerns for security and performance. However. as pointed out by

[JI-IC94], [MaBe93]. and [TNML93]. nser-space implementations can be more easily modified and customized, are easier

to debug and experiment with. are more easily ported between different platforms, and can increase the perfcrmauce of

protocols when run on a multiprocessor. In addition. [TNML93] shows that it is possible to implement protocols in user-

space without major throughput penalties.

Numerous "software buses" have been implemented recently, which are designed to make applications which do group

communication much easier to program. RMP was originaUy designed as the transport layer for one of these buses, the

MessageBus[CarroU93], and supports these types of systems very well. Some of the features that these systems provide on

top of RMP are translation of raw data into different formats and objects, filtering of packets based on another level of

group or domain identifier, dynamic loading of processes that are requested to provide a service, buffering multiple small

DRAFT COPY SUBMITTED TO 1995 INFOCOM--PLEASE DO NOT CIRCULATE 23



packets into a single large packet under heavy load, and a uniform communication interface independent of the actual

transport used. Other instances of these software buses are Polyllth [Purtflo85] and MultiBus [CaMo94].

4 Performance

Note to reviewers: We are finishing up the implementation of the second version right now, and should have

performance nuad_rs for it over both LANs and WANs by the time this paper is due for publication.

In normal situations with low error rates and moderate to high traffic, TRP requires very close to 2 broadcasts per

message. As the traffic rate decreases, this increases to 2 broadcasts plus a unicast due to the confirm or empty ACK

packets required to conftrm the transfer of the token. As the error rate increases, the number of packets sent increases.

but it is always lower than that required with positive acknowledgments for groups of three or more sites including the

sender[ChMa84].

=I _ We measured the performance of the first version of

5ooo+ [] Ettr.._Max RMP. The algorithms that affect performance in this

_ _,0oo! V]RMP

_o0 version axe very similar to those used in the version
2o00 • MBusl

10_0 described in this paper, and so should have high
0 ......

z ._ __ z __ __ __ _ __ applicability. Performance testing was done on 8

# Senderl : # Dmtinatiom

SparcStationl0's (Sun4m machines) on a lightly loaded 10
Figure 4.1: Aggregate Throughput (KB/sec)

Mb/sec Ethcruet. All of the machines were running SunOS

version 4.1.3. All tests were for totally ordered packets. Throughput was measured by timing the transfer of a 5 MB data

f'de, and so does not include packet headers. Latency was measured by timing the sendin 8 of 10,000 minimum le,nsth

messages (of 64 bytes, including all headers) with buffering and windowed flow control disabled. This causes the

protocol to revert to a stop-and-wait acknowledgment system, in which case latency is equal to one over the number of

messages sent per second. To eliminate the start up effects 0£ the adaptive time-outs, an initial run was made in each test

and discarded. Three runs were made in each test and the results were averaged together. While we do not show the

standard deviations, they were quite small.

Figure 4.1 shows the aggregate throughput of the network as a function of the number of sources and destinations.

Aggregate throughput is the throughput the user sees. It is computed by taking the amount of data sent from all of the
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senders and multiplying it by the number of destinations, In these tests, the sender is also a destination. This is done so

that it can see its own messages totally ordered with the others. This is the way that most groups use totally ordered

multicast, and is actually the worst case fix the throughput of the protocol because of the increased CPU load (if the

senders. A single-server, TCP/IP based system, the MBusI, is shown for comparison. The MBusI accepts a TCP/IP

stream from each communication client and routes packets between them. The maximum bandwidth of the Ethexnet used

in this study is also shown. For the case of 2 sources and 8 sinks, RMP achieved an aggregate throughput of 6810

KB/sec. This is 5.45 times the bandwidth of the Ethernet. It is impossible for any solution that does not use either

multicast or broadcast to achieve any result that breaks the Ethernet throughput boundary this way.

In graph 4.2, we see the single sender throughput plotted against the number of destinations. The single sender

throughput is equal to the aggregate throughput divided by the number of destinations. To be compa6ble with othex

published figures, in these tests the source was separate from the destinations. Data from the MBusI is included for

comparison. The pedormance of all applications (such as UDP ISIS, Sun ToolTalk. the MBusI. and RPC) that do not use

hardware broadcast or multicast drops off as a factor of 1/N. The graph is plotted with a logarithmic axis for throughput

to better show this limitation, which is a fundamental limit of the network. In con_ast, RMP stays roughly comtant

regardless of the number of destinations. RMP breaks the fundamental unicast Limit for two destinations, and so has

higher throughput in this environment for all groups of more than one destination. We have not included any numbers

from other reliable multicast protocols because no fair comparisons on the same platforms have yet been made.

1000 ,_ I

_[ _ MBUS I

aa

_"- Non-Muti_st

M_um

Lou I

2 3 4 5 6

Number of Dmtinatiem (N)

Figure 4.2: Single sender throughput (log scale)

multicast also scales linearly as a function of N [BiC1941.

disabled and KffiO.

In figure 4.3, we see the same factors, but with latency

as the meUic instead of throughput. Here again, the

performance of RMP stays almost constant. While we

have not yet been able to make fair comparisons to other

protocols, the data that we have shows that the latency of

protocols that do not take advantage of hardware

Note that this graph shows the case when fault tolerance is

The resiliency factor K does not affect throughput, but does increase lateacy. As K increases, the
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latency under heavy load will increase by a factor of roughly (K+2)[2. While not yet tested, we expect the RMP pac_ts

with source ordering to provide lower latency to multiple destinations than unicast systems such as RPC and TCP.
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!
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1

0

2 3 4 5 6 7

Nmnbcr of De_natimm (N)

5 Comparison to previous work

Work as early as the V system [ChZw85] implements

multicast communication between groups. The V system only

implements "best effort" delivery semantics, and does not

Rgure 4.3: Single sender latency with K=O (ms) provide any ordering guarantees on messages.

The MBusI [Carroll93] was the original motivation for RMP. It provides a central server through which clients

connect with TCP/IP streams, and an easy to use interface designed to ease the implementation of CSCW applications. It

provides both total ordering of messages and reliable multicast, but has very limited scalability.

The Totem protocol [AMSM92] is perhaps closest to RMP in its approach, and has reported similar throughput levels

as RMP under heavy load. Totem is perhaps the only reliable multicast protocol that allows consistent total ordering to

proceed across multiple partitions of a group. It also uses a token ring approach, but only provides for a single ring for

each broadcast domain. Totem avoids using any ACKs by only allowing the token holder to send data out and by having

each packet automatically pass the token. This provides high throughput under high load over a low latency network, but

provides longer latency under low and asymmetrical loads. In addition, because it only allows a single sender to transmit

at a time it will provide lower throughput over longer latency networks. To alleviate this problem they provide gateways

to link multiple broadcast domains together.

The ISIS system [BSS91], [Birman93] is one of the pio_mering protocols in this field. It provides causal ordering and.

if desired, total ordering of messages on top of a reliable multicast protocol. The reliable multicast protocol requires

separate acknowledgments from each destination, which limits pedcrmanc_. A new system that provides causal ordering

on top of IP Multicasting has been implemented which is much more efficient than the old system [Clark94], and we hope

to compare RMP and this new protocol soon.

The Psync protocol [PBS89] is an ingenious protocol that uses piggybacked ACKs to provide causal orderin8 of

messages and detection of dropped packets. However, both it and the similar Trans [MSMA90] and Lansis [ADKM93]
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protocols require that all of the members o_ the group regularly transmit messages. The Trans protocol and the ToTo

[DKM] protocol implemented on top c_ Lansis both provide total ordering of messages. These algorithms require that at

least a majority of the group members be heard from before a message can be delivered, which causes latency to increase

by at least an order of magnitude. For example, for the ToTo protocol to send to a group of 8 destinations under heavy.

periodic load from all sources (the best case), the latency is 23.8 ms. This increases to 114.1 ms for lightly loaded poisson

sources.

The Multicast Transport Protocol (MTP) [AFM92] is an example of an asymmetric reliable multicast protocol. One

site is the communication master which grants "tokens" to group members to ailow them to send data. These tokens

provide both flow control and total ordering of messages. This causes over dependency on the master, which limits both

reliability and perfc_aance. MTP also relies exclusively on NACKs for error recovery, which limits reliability and

requires extreme amounts of buffer space.

The protocol by Crowcroft and Paliwoda [CrPa88] is one of the first protocols to propose reliable multicast over an

internetwork which supports hardware multicast. The protocol provides different levels of reliability guarantees, and uses

positive acknowledgments from all destinations for reliability. The paper analyzes the flooding problems that occur with

simultaneous ACKs from many destinations and proposes a windowed flow control system, in some ways similar to that

used in RMP, to alleviate these problems.

The protocol by Navaratnam. Chanson, and Neufeld [NCN88] is a centralized mulficast protocol that uses a single

token site to provide total ordering and reliability. It requires that each site send back a positive acknowledgment before

the next packet can be sent. An implementation on top of the V-system takes 24.8 ms to send a multicast to four

destinations. This protocol also is limited in reliability and scalability by the central server. The xAmp protocol

[RoVe92] is distributed but also waits for ACKs from all destinations, and so will exhibit performance similar to NCN

and ISIS.

The broadcast protocol proposed by Kaashoek et. al. [KTHB88] uses a central token site to serialize messages and

NACKs for retr_sions. It piggybacks ACKs onto sent messages and has the token site regularly contact silent sites

in order to limit buffer space. This protocol has reported very good latency (as low as 1.3 ms for a NULL packe0 because

it has been implemented on top of bare hardware. However. because each message must be transmitted twice it will
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fundamentally achieve lower throughput than RMP -- 600 KB/sec is a rough upper bound for a 1250 KB/sec Ethernet, as

compared to 842 KB/sec for RMP. This will also limit the latency for larger messages; as a 8KB packet in their Izrotocol

will spend a minimum of 13.1 ms ou the Ethernet, as opposed to 6.7 ms for the message and ACK of RMP.

6 Conclusions

In this paper we have described the basic mechanisms and algorithms of RMP. a fully distributed, totally ordered,

reliable, atomic, K-resilient fault tolerant multicast protocol. We have shown that RMP provides these features with very

high performance. In a LAN, RMP provides much higher throughput to groups of two or more destinations than any

protocol that does not take advantage _f multicast or broadcast. In addition, it provides lower latency to groups of 3 or

more destinations than most other protocols. Much work has gone into providing reliable multicast services with lower

ordering guarantees because it was believed that the performance of a totally ordered mul6cast protocol was inherently

low. RMP suggests that this is not the case. and that an efficient reliable mulficast service can provide total ordering of

messages for only a small latency penalty. Finally. because of its use of multiple token rings, an optional clienffserver

architecture, its fully distribu(ed nature, and its flow and congestion control algorithms, we expect RMP to scale

gracgfuUy and efficiently to large groups spread over a large intexnetwork, and we plan to test this hypothesis in the near

future.
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